Measuring the Accuracy of Object Detectors and Trackers

نویسندگان

  • Tobias Böttger
  • Patrick Follmann
  • Michael Fauser
چکیده

The accuracy of object detectors and trackers is most commonly evaluated by the Intersection over Union (IoU) criterion. To date, most approaches are restricted to axis-aligned or oriented boxes and, as a consequence, many datasets are only labeled with boxes. Nevertheless, axis-aligned or oriented boxes cannot accurately capture an object’s shape. To address this, a number of densely segmented datasets has started to emerge in both the object detection and the object tracking communities. However, evaluating the accuracy of object detectors and trackers that are restricted to boxes on densely segmented data is not straightforward. To close this gap, we introduce the relative Intersection over Union (rIoU) accuracy measure. The measure normalizes the IoU with the optimal box for the segmentation to generate an accuracy measure that ranges between 0 and 1 and allows a more precise measurement of accuracies. Furthermore, it enables an efficient and easy way to understand scenes and the strengths and weaknesses of an object detection or tracking approach. We display how the new measure can be efficiently calculated and present an easy-to-use evaluation framework. The framework is tested on the DAVIS and the VOT2016 segmentations and has been made available to the community.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Object Tracking Performance Metrics and Evaluation in a Smart Room Environment

Simultaneous tracking of multiple persons in real world environments is an active research field and several approaches have been proposed, based on a variety of features and algorithms. Recently, there has been a growing interest in organizing systematic evaluations to compare the various techniques. Unfortunately, the lack of common metrics for measuring the performance of multiple object tra...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

Contours Extraction Using Line Detection and Zernike Moment

Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...

متن کامل

Verification of the Accuracy of the Delivered Dose in Brain Tumors by in Vivo Dosimetry Using Diode Detectors

Introduction: During radiotherapy, high accuracy in the dose delivery is required because there is a strong  relationship between the absorbed dose, local tumor control and particularly the normal tissue damage. In  many institutions, in vivo dosimetry using diodes is performed to check the actual dose delivered. In general,  the uncertainty in the dose delivered should fall within  ± 5% of the...

متن کامل

A Survey on Hardware Implementations of Visual Object Trackers

Visual object tracking is an active topic in the computer vision domain with applications extending over numerous fields. The main sub-tasks required to build an object tracker (e.g. object detection, feature extraction and object tracking) are computation-intensive. In addition, real-time operation of the tracker is indispensable for almost all of its applications. Therefore, complete hardware...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017